Iwahori-Matsumoto involution and linear Koszul Duality

نویسندگان

  • IVAN MIRKOVIĆ
  • SIMON RICHE
چکیده

In this paper we use linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras studied in [MR1, MR2] to give a geometric realization of the Iwahori–Matsumoto involution of affine Hecke algebras. More generally we prove that linear Koszul duality is compatible with convolution in a general context related to convolution algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Koszul Duality and Affine Hecke Algebras

In this paper we prove that the linear Koszul duality equivalence constructed in a previous paper provides a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras.

متن کامل

Linear Koszul Duality and Fourier Transform for Convolution Algebras

In this paper we prove that the linear Koszul duality isomorphism for convolution algebras in K-homology of [MR3] and the Fourier transform isomorphism for convolution algebras in Borel– Moore homology of [EM] are related by the Chern character. So, Koszul duality appears as a categorical upgrade of Fourier transform of constructible sheaves. This result explains the connection between the cate...

متن کامل

Whittaker Unitary Dual of Affine Graded Hecke Algebras of Type E

This paper gives the classification of the Whittaker unitary dual for affine graded Hecke algebras of type E. By the Iwahori-Matsumoto involution, this is equivalent also to the classification of the spherical unitary dual for type E. Together with [BM3], [Ba1] and [Ci1], this work completes the classification of the Whittaker Iwahori-spherical unitary dual, or equivalently, the spherical unita...

متن کامل

Linear Koszul duality, II: coherent sheaves on perfect sheaves

In this paper we continue the study (initiated in [MR1]) of linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras. We construct this duality in a very general setting, and prove its compatibility with morphisms of vector bundles and base change.

متن کامل

Constructible Sheaves on Simplicial Complexes and Koszul Duality

We obtain a linear algebra data presentation of the category Sh c (X,δ) of constructible with respect to perverse triangulation sheaves on a finite simplicial complex X. We also establish Koszul duality between Sh c (X, δ) and the category Mc(X, δ) of perverse sheaves constructible with respect to the triangulation

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013